新闻资讯
看你所看,想你所想

变结构鲁棒控制

变结构鲁棒控制

变结构鲁棒控制(Variable structure robust control)是指控制系统在一定(结构,大小)的参数摄动下,维持某些性能的特性,当系统的状态满足一定的条件时,系统的控制结构将发生变化。变结构鲁棒控制就是当系统状态穿越不同区域时,反馈控制的结构按照一定的规律发生变化,使得控制系统对被控对象的内在参数变化和外部环境扰动等因素具有一定的适应能力,保证系统性能达到期望的性能指标要求的控制方式。

基本介绍

  • 中文名:变结构鲁棒控制
  • 外文名:Variable structure robust control
  • 涉及学科:信息科学
  • 套用:自动化
  • 条件:一定(结构,大小)的参数摄动
  • 目的:系统的控制结构将发生变化

鲁棒控制

鲁棒控制(Robust Control)方面的研究始于20世纪50年代。在过去的20年中,鲁棒控制一直是国际自控界的研究热点。所谓“鲁棒性”,是指控制系统在一定(结构,大小)的参数摄动下,维持某些性能的特性。根据对性能的不同定义,可分为稳定鲁棒性和性能鲁棒性。以闭环系统的鲁棒性作为目标设计得到的固定控制器称为鲁棒控制器。
由于工作状况变动、外部干扰以及建模误差的缘故,实际工业过程的精确模型很难得到,而系统的各种故障也将导致模型的不确定性,因此可以说模型的不确定性在控制系统中广泛存在。如何设计一个固定的控制器,使具有不确定性的对象满足控制品质,也就是鲁棒控制,成为国内外科研人员的研究课题。
主要的鲁棒控制理论有:(1)Kharitonov区间理论;(2)H∞控制理论;(3)结构奇异值理论(μ理论)等等。

H∞控制理论

H∞控制理论是20世纪80年代开始兴起的一门新的现代控制理论。H∞控制理论是为了改变近代控制理论过于数学化的倾向以适应工程实际的需要而诞生的,其设计思想的真髓是对系统的频域特性进行整形(Loopshaping),而这种通过调整系统频率域特性来获得预期特性的方法,正是工程技术人员所熟悉的技术手段,也是经典控制理论的根本。
1981年Zames首次用明确的数学语言描述了H∞最佳化控制理论,他提出用传递函式阵的H∞範数来记述最佳化指标。1984年加拿大学者Fracis和Zames用古典的函式插值理论提出了H∞设计问题的最初解法,同时基于运算元理论等现代数学工具,这种解法很快被推广到一般的多变数系统,而英国学者Glover则将H∞设计问题归纳为函式逼近问题,并用Hankel运算元理论给出这个问题的解析解。Glover的解法被Doyle在状态空间上进行了整理并归纳为H∞控制问题,至此H∞控制理论体系已初步形成。
在这一阶段提出了H∞设计问题的解法,所用的数学工具非常繁琐,并不像问题本身那样具有明确的工程意义。直到1988年Doyle等人在全美控制年会上发表了着名的DGKF论文,证明了H∞设计问题的解可以通过适当的代数Riccati方程得到。DGKF的论文标誌着H∞控制理论的成熟。迄今为止,H∞设计方法主要是DGKF等人的解法。不仅如此,这些设计理论的开发者还同美国的The Math Works公司合作,开发了MATLAB中鲁棒控制软体工具箱(Robust Control Toolbox),使H∞控制理论真正成为实用的工程设计理论。

变结构控制

所谓变结构,是指当系统的状态满足一定的条件时,系统的控制结构将发生变化。变结构控制(VSC)就是当系统状态穿越不同区域时,反馈控制的结构按照一定的规律发生变化,使得控制系统对被控对象的内在参数变化和外部环境扰动等因素具有一定的适应能力,保证系统性能达到期望的性能指标要求。
由于变结构控制具有抗扰性、自适应性、鲁棒性、实现容易等优点,因此变结构控制引起了人们的普遍重视。

发展

变结构控制的研究始于 20 世纪 50 年代,前苏联学者 Emelyanov 等提出了变结构控制概念。随后 Utkin,Itkis 等学者总结并发展了滑模变结构控制理论,奠定了滑模变结构控制的理论基础。20 世纪 80 年代以来,随着确定切换函式的系统性方法的出现和微分几何理论的发展,变结构控制开始了新的发展阶段。近二十年来,随着计算机技术和大功率电子开关器件的发展,变结构控制的实现变得越来越容易,因此该方法受到了国内外控制界的广泛重视,现已成为自动控制领域的重要设计方法,并在工程套用中得到了推广套用。
变结构控制是指系统状态达到切换函式值,系统从一个结构自动地切换到另一个确定的结构(结构是一组数学方程描述的模型)。从本质上讲它具有开关切换特性,是一种控制系统的设计方法,适用于线性及非线性系统,包括控制系统的调节,跟蹤,自适应及不确定等系统。它具有一些优良特性,尤其是对加给系统的摄动和干扰有良好的自适应性。

分类

图 1对变结构控制作了大致的分类,变结构控制可分为两大类:
图1 变结构控制器分类图图1 变结构控制器分类图
一类是不具有滑动模态的变结构控制,如Bang-Bang 控制、输出反馈变结构控制、多输入继电控制等。这一类控制只能称为变结构控制,虽然控制器可根据反馈量改变系统的结构使系统稳定于平衡位置,但系统不存在一个可滑动的面。
另一类是具有滑动模态(简称为滑模或滑模面)的变结构控制。这一类控制可称为滑模变结构控制或滑模控制,它的控制分为两个步骤:首先是系统从初始状态趋近于併到达滑模面,接着系统在滑模面上滑动併到达平衡位置。
变结构控制器都有一个切换面,如 x1,x2或者 x1+5x2,而具有滑动模态的切换面才称为滑模面。

变结构鲁棒控制

变结构鲁棒控制(Variable structure robust control)是指控制系统在一定(结构,大小)的参数摄动下,维持某些性能的特性,当系统的状态满足一定的条件时,系统的控制结构将发生变化。变结构鲁棒控制就是当系统状态穿越不同区域时,反馈控制的结构按照一定的规律发生变化,使得控制系统对被控对象的内在参数变化和外部环境扰动等因素具有一定的适应能力,保证系统性能达到期望的性能指标要求的控制方式。

研究

变结构鲁棒控制的早期研究,主要针对单变数系统(SISO)的在微小摄动下的不确定性,具有代表性的是Zames提出的微分灵敏度分析。然而,实际工业过程中故障导致系统中参数的变化,这种变化是有界摄动而不是无穷小摄动。因此产生了以讨论参数在有界摄动下系统性能保持和控制为内容的现代鲁棒控制。
现代变结构鲁棒控制是一个着重控制算法可靠性研究的控制器设计方法。其设计目标是找到在实际环境中为保证安全要求控制系统最小必须满足的要求。一旦设计好这个控制器,它的参数不能改变而且控制性能能够保证。
变结构鲁棒控制方法,是对时间域或频率域来说,一般要假设过程动态特性的信息和它的变化範围。一些算法不需要精确的过程模型,但需要一些离线辨识。
一般变结构鲁棒控制系统的设计是以一些最差的情况为基础,因此一般系统并不工作在最优状态。常用的设计方法有:INA方法,同时镇定,完整性控制器设计,鲁棒控制,鲁棒PID控制以及鲁棒极点配置,鲁棒观测器等。
变结构鲁棒控制方法适用于稳定性和可靠性作为首要目标的套用,同时过程的动态特性已知且不确定因素的变化範围可以预估。飞机和空间飞行器的控制是这类系统的例子。
过程控制套用中,某些控制系统也可以用鲁棒控制方法设计,特别是对那些比较关键且(1)不确定因素变化範围大;(2)稳定裕度小的对象。
但是,鲁棒控制系统的设计要由高级专家完成。一旦设计成功,就不需太多的人工干预。另一方面,如果要升级或作重大调整,系统就要重新设计。

H∞鲁棒控制理论的特点

1) 将经典频域设计理论具有一定的鲁棒性和现代控制理论状态空间方法适于MIMO 系统的两个优点融合在一起,系统地给出了在频域中进行迴路成形的技术和手段。
2) 给出了鲁棒控制系统的设计方法,并充分考虑了系统不确定性的影响,不仅能保证控制系统的鲁棒稳定性,而且能最佳化某些性能指标。
3) 採用状态空间方法,具有时域方法精确计算和最最佳化的优点。
4) 多种控制问题均可变换为H∞鲁棒控制理论的标準问题,具有一般性,并适于实际工程套用。

变结构鲁棒控制设计

变结构鲁棒控制的特点就在于控制量的非线性切换。这样的切换控制需要两方面的设计 :
一 是选择切换面,如全状态滑模变结构的切换面一般是,部分状态滑模变结构的切换面只是一部分状态反馈的线性组合,而非滑模变结构的切换面一般是某一个状态反馈;
二是切换控制律,它一般表示为其中 K(x)为切换项增益,f (s(x))为切换控制器,常用的切换控制器有理想继电器、滞环继电器等是最常用的切换控制律。

全状态滑模面设计

滑模面的设计是滑模变结构控制的核心问题。滑模面设计的好坏决定系统的性能,它同时还关係到系统的稳定性和抖振的大小。滑模面的设计方法较多,具有代表性的方法有基于降阶的滑模面设计、基于线性矩阵不等式(LMI)的滑模面设计、时变滑模面设计等。

非滑模变结构切换面设计

非滑模变结构切换面的设计具有更强的灵活性,同时也需要利用多种手段来分析它们。学者 Boiko、Huang、Oliveira、Plestan 提出了多种切换面设计方法,也考虑了切换面与系统的稳定关係。
图2 滞环继电器补偿控制图2 滞环继电器补偿控制
图 2、图3列出了 Boiko 提出的两种控制方法。Boiko 採用描述函式(DF)法和 LPRS 法分析它们的稳定性。图 2控制器将系统输出作为切换面,Boiko 利用 DF 法分析滞环继电器和 W(jω)的幅相频率特性。若无法得到期望的性能,则设计补偿环节,调节 W(jω)的幅相频率特性的分布。图 3将系统输出 y(t)及其导数y'(t)作为控制器的两个切换面,通过改变两继电器增益,可使其描述函式在第二象限旋转,从而改善系统控制精度。
图3 多输入继电器控制图3 多输入继电器控制

切换控制器设计

切换控制器关係到系统鲁棒性和抖振特性。常用的切换控制器类型有理想继电器、饱和函式、滞环继电器、2-SMC等。
(1) 理想继电器是最常用的切换控制器,系统状态一旦穿越切换面,理想继电器就输出反向控制量,因此具有很好的鲁棒性,但它容易受到噪声的影响,且易引入较快的抖振频率。
(2) 饱和函式抑制抖振的效果明显,但它可能使滑模控制失去鲁棒性。
(3)滞环继电器使切换控制器变得相对迟钝,增大了切换面宽度,降低了控制精度,但通过改变迟滞量可调节抖振幅度和频率。
(4)2-SMC 具有多个控制参数,通过改变这些参数可更加灵活地调节控制器的鲁棒性和抖振特性,抖振频率既能降低也能提高。

转载请注明出处安可林文章网 » 变结构鲁棒控制

相关推荐

    声明:此文信息来源于网络,登载此文只为提供信息参考,并不用于任何商业目的。如有侵权,请及时联系我们:fendou3451@163.com