新闻资讯
看你所看,想你所想

空间自相关

空间自相来自关(spatial autocorrelation)是指一些变量在同一个分布区内的观测数据之间潜在的相互依赖性。360百科Tobler(查少尽者例团证1970)曾指出"地理学第一定律:任何东西与别的东西之间都是相关的,但近处的东西比远处量儿计烟季的见红据的东西相关性更强"。

  • 中文名称 空间自相关
  • 外文名称 spatial autocorrelation
  • 对象 变量同一个分布区内观测数据之间
  • 类别 潜在的相互依赖性

统计量

  空间自相关统计量是用于度量地理数据(geog浓短似东齐银乐孙得说看raphic data)的一个基本性质:某位置上的数据与其他位置上的数据间的相互依赖程度。通常把这种依赖叫做空间依赖(spatial dependence)。地理数据由于受空间相互作用和空间扩散的影响,彼此之间可能不再相互独立,而是相关的。例来自如,视空间上互相减星感怕分离的许多市场为一个集合,如市场间的距离近油令获抓成到可以进行商品交换与流动,则商品的价格与供应鸡口宗尼征宁在空间上可能是相关的,而不再相互独立。实际上,市场间距离越近,商品价格就越接近、越相关。

学科分析

  在地理统计学科中应用较多,现已有多种360百科指数可以使用,但最主要的有两种指数,即Mo空材责聚之鱼承二刘短ran的I指数和Geary的C指数。

  在统计上,通过相关分析(correlation analysis)可以检测两种现象(统计量)的变化是否存在相关性,例如:稻米的产量,往往与其所处的土壤肥沃程度相关。如果这个分析统计量是不同观察对象的同一属性变量,就称之为「自相关」(autoco考跑无缺注殖底rrelation)。因此,所谓的空间自相关(spatial autocorrelation)就是研究「空间中,某空间单元与其周围单元间,就某种特征值,透过统计方法,进行空间自相关性程度的计算,以分析这些空间单元在空间上分布现象的特性」。

计算方法

  有许多种,然最为知名也最为常用的有:Moran's I、Geary's C、Getis、Join count等等。但这些方法各有其功用,同时亦有其适用范畴与限制,当然自有其优缺点。一般来说,方法在功用上可大致分为两大类:一为全域型(Global Spati来自al Autocorrelation),另一则为区域型(Local Spatial Autocorrelation)两种。

  全域型的功能在于描述某现象的整体分布状况,判断此现象在空间是否有聚集特性存在,但其并不能确切地指出聚集在哪些地区。且若将全域型不同的空间间隔(spatial lag)的空间自相关统计量依序排列,还可进一步作空间自相关系数图(spatial autocorrelation coefficient correlogram),分析该现象在空间上是否有阶层性分布。而依据A肥指奏杆序空告牛帝掌夜nselin(1995)提出LISA(Local Indicators of Spatial Association)方法论说法,区域型之所以能够推算出聚集地(spatial hot spot)的范围,主要360百科有两种:一是藉由统计做优态液尼混头致河显著性检定的方法,检定聚集空间单元相对於整体研究范围而言,其空间自相关是否够显著,若显著性大,即是该现象空间聚集的地区,如:Get尔胡经治止段能严朝口is和Ord(1992)发展的Getis统计方法;另外,则是度量空间单元对整个研究范围空间自相关的影响程度,影响程度大的往往是区域内的「特例」(outliers),也就表示这些「特例」点往往是空间现象的聚集点,例如:Anselin's Moran Scatterplot。

转载请注明出处安可林文章网 » 空间自相关

相关推荐

    声明:此文信息来源于网络,登载此文只为提供信息参考,并不用于任何商业目的。如有侵权,请及时联系我们:fendou3451@163.com