新闻资讯
看你所看,想你所想

非线性控制系统的分析与设计

《非线性控制系统的分析与设计》是 科学出版社出版的图书,作者是Daizhan Cheng、 Xiaoming Hu、 Tielong Shen。

  • 书名 非线性控制系统的分析与设计
  • 作者 Daizhan Cheng、 Xiaoming Hu、 Tielong Shen
  • 出版社 科学出版社
  • 页数 545 页
  • 开本 16 开

简介

  本阶广激收参总阳坚末书全面介绍了非线性控制系统的分析与设计。全书共分为两部分来自。其中第一部分为第1~4章。第1章介绍了拓扑空间,第2章渗船驼介绍了微流形,第3章介绍了代数、Lie群和Lie代数,它们为本书提供了研究已温然切几数学背景。第二部分包括12章,即第5~16章,这协渗些章节涵盖了可控留往可亲某介未称滑顾存性、可观测性、稳定性、解耦、讲罪战投入产出的实现、线性化、中心流技术、输出调节、耗院枣墓散系统、H∞控制、360百科切换系统和非平稳控制等方面,并给出了有景注介老卷关的详细设计技术。 本书可供理工科大学自动控制专业的教师及照循删婚研究生阅读,也可供自然科学和工程技术领域中签影多相关专业的研究人肯兆谜雄员参考。

图书目征有香利改独试

  1. Introduction

  1.1 Linear Control Systems

  1.1.1 Controllability, Observa油陆善导反件普植bility

  1.1.2 Invariant Subspac祖抗均测晶根置感es

  1.1.3 Zeros, Poles, Observers

  1.1.4 Normal Form and Zero Dynamics

  1.2 N课吗血座环onlinearit世况积套几五y vs Linearity

  1.2.1 Loca病浓触lization

  1.2.2 Singularity

  1.2.3 Complex Behavior课想弱均福治s

  1.3 Some Examples of Nonl干次引千压击黑劳厂inear Control Systems

  References

  2. Topological Space

  2.1 Metric Space

  2.2 Topological Spaces

  2.3 Continuous Mapping

  2.4 Quotient Spaces

  References

  3. Differentiab!e Manifold

  3.1 Structure 排临医全女风of Manifolds

  3.2 F说房红操真爱烧普高配iber Bundle

  3.3 Vector Field

  3.4 One Parameter Group

  3.5 Lie Algebra of Vector Fields

  3.6 Co-tangent Space

  3.7 Lie Derivatives

  3.8 Frobenius' Theory

  3.9 Lie Series, Chow's Theo哪离企换压位四江六激脸rem

  3.10 Tensor Field

  3.探续省意11 Riemannian Geo工财明标与率整马极香metry

  3.12 Symplectic Geometry

  References

  4. Algebra, Lie Group and Lie Algebra

  4.1 Group

  4.2 Ring and Algebra

  4.3 Homotopy

  4.4 Fundamental Group

  4.5 Covering Space

  4.6 Lie Group

  4.7 Lie Algebra of Lie Group

  4.8 Structure of Lie Algebra

  References

  5. Controllability and Observability

  5.1 Controllability of Nonlinear Systems

  5.2 Observability of Nonlinear Systems

  5.3 Kalman Decomposition

  References

  6. Global Controllability of Affine Control Systems

  6.1 From Linear to Nonlinear Systems

  6.2 A Sufficient Condition

  6.3 Multi-hierarchy Case

  6.4 Codim = 1

  References

  7. Stability and Stabilization

  7.1 Stability of Dynamic Systems

  7.2 Stability in the Linear Approximation

  7.3 The Direct Method of Lyapunov

  7.3.1 Positive Definite Functions

  7.3.2 Critical Stability

  7.3.3 Instability

  7.3.4 Asymptotic Stability

  7.3.5 Total Stability

  7.3.6 Global Stability

  7.4 LaSalle's Invariance Principle

  7.5 Converse Theorems to Lyapunov's Stability Theorems

  7.5.1 Converse Theorems to Local Asymptotic Stability

  7.5.2 Converse Theorem to Global Asymptotic Stability

  7.6 Stability of Invariant Set

  7.7 Input-Output Stability

  7.7.1 Stability of Input-Output Mapping

  7.7.2 The Lur'e Problem

  7.7.3 Control Lyapunov Function

  7.8 Region of Attraction

  References

  8. Deeoupling

  8.1 (f,g)-invariant Distribution

  8.2 Local Disturbance Decoupling

  8.3 Controlled Invariant Distribution

  8.4 Block Decomposition

  8.5 Feedback Decomposition

  References

  9. Input-Output Structure

  9.1 Decoupling Matrix

  9.2 Morgan's Problem

  9.3 Invertibility

  9.4 Decoupling via Dynamic Feedback

  9.5 Normal Form of Nonlinear Control Systems

  9.6 Generalized Normal Form

  9.7 Fliess Functional Expansion

  9.8 Tracking via Fliess Functional Expansion

  References

  10. Linearization of Nonlinear Systems

  10.1 Poincare Linearization

  10.2 Linear Equivalence of Nonlinear Systems

  10.3 State Feedback Linearization

  10.4 Linearization with Outputs

  10.5 Global Linearization

  10.6 Non-regular Feedback Linearization

  References

  11 Design of Center Manifold

  11.1 Center Manifold

  11.2 Stabilization of Minimum Phase Systems

  11.3 Lyapunov Function with Homogeneous Derivative

  11.4 Stabilization of Systems with Zero Center

  11.5 Stabilization of Systems with Oscillatory Center

  11.6 Stabilization Using Generalized Normal Form

  11.7 Advanced Design Techniques

  References

  12 Output Regulation

  12.1 Output Regulation of Linear Systems

  12.2 Nonlinear Local Output Regulation

  12.3 Robust Local Output Regulation

  References

  13 Dissipative Systems

  13.1 Dissipative Systems

  13.2 Passivity Conditions

  13.3 Passivity-based Control

  13.4 Lagrange Systems

  13.5 Hamiltonian Systems

  References

  14 L2-Gain Synthesis

  14.1 H∞ Norm and//2-Gain

  14.2 H∞ Feedback Control Problem

  14.3 L2-Gain Feedback Synthesis

  14.4 Constructive Design Method

  14.5 Applications

  References

  15 Switched Systems

  15.1 Common Quadratic Lyapunov Function

  15.2 Quadratic Stabilization of Planar Switched Systems

  15.3 Controllability of Switched Linear Systems

  15.4 Controllability of Switched Bilinear Systems

  15.5 LaSalle's Invariance Principle for Switched Systems

  15.6 Consensus of Multi-Agent Systems

  15.6.1 Two Dimensional Agent Model with a Leader

  15.6.2 n Dimensional Agent Model without Lead

  References

  16 Discontinuous Dynamical Systems

  16.1 Introduction

  16.2 Filippov Framework

  16.2.1 Filippov Solution

  16.2.2 Lyapunov Stability Criteria

  16.3 Feedback Stabilization

  16.3.1 Feedback Controller Design: Nominal Case

  16.3.2 Robust Stabilization

  16.4 Design Example of Mechanical Systems

  16.4.1 PD Controlled Mechanical Systems

  16.4.2 Stationary Set

  16.4.3 Application Example

  References

  Appendix A Some Useful Theorems

  A.1 Sard's Theorem

  A.2 Rank Theorem

  References

  Appendix B Semi-Tensor Product of Matrices

  B.1 A Generalized Matrix Product

  B.2 Swap Matrix

  B.3 Some Properties of Semi-Tensor Product

  B.4 Matrix Form of Polynomials

  References

  Index

转载请注明出处安可林文章网 » 非线性控制系统的分析与设计

相关推荐

    声明:此文信息来源于网络,登载此文只为提供信息参考,并不用于任何商业目的。如有侵权,请及时联系我们:fendou3451@163.com