
《非线性控制系统的分析与设计》是 科学出版社出版的图书,作者是Daizhan Cheng、 Xiaoming Hu、 Tielong Shen。
- 书名 非线性控制系统的分析与设计
- 作者 Daizhan Cheng、 Xiaoming Hu、 Tielong Shen
- 出版社 科学出版社
- 页数 545 页
- 开本 16 开
简介
本阶广激收参总阳坚末书全面介绍了非线性控制系统的分析与设计。全书共分为两部分来自。其中第一部分为第1~4章。第1章介绍了拓扑空间,第2章渗船驼介绍了微流形,第3章介绍了代数、Lie群和Lie代数,它们为本书提供了研究已温然切几数学背景。第二部分包括12章,即第5~16章,这协渗些章节涵盖了可控留往可亲某介未称滑顾存性、可观测性、稳定性、解耦、讲罪战投入产出的实现、线性化、中心流技术、输出调节、耗院枣墓散系统、H∞控制、360百科切换系统和非平稳控制等方面,并给出了有景注介老卷关的详细设计技术。 本书可供理工科大学自动控制专业的教师及照循删婚研究生阅读,也可供自然科学和富工程技术领域中签影多相关专业的研究人肯兆谜雄员参考。
图书目征有香利改独试录
1. Introduction
1.1 Linear Control Systems
1.1.1 Controllability, Observa油陆善导反件普植bility
1.1.2 Invariant Subspac祖抗均测晶根置感es
1.1.3 Zeros, Poles, Observers
1.1.4 Normal Form and Zero Dynamics
1.2 N课吗血座环onlinearit世况积套几五y vs Linearity
1.2.1 Loca病浓触lization
1.2.2 Singularity
1.2.3 Complex Behavior课想弱均福治s
1.3 Some Examples of Nonl干次引千压击黑劳厂inear Control Systems
References
2. Topological Space
2.1 Metric Space
2.2 Topological Spaces
2.3 Continuous Mapping
2.4 Quotient Spaces
References
3. Differentiab!e Manifold
3.1 Structure 排临医全女风of Manifolds
3.2 F说房红操真爱烧普高配iber Bundle
3.3 Vector Field
3.4 One Parameter Group
3.5 Lie Algebra of Vector Fields
3.6 Co-tangent Space
3.7 Lie Derivatives
3.8 Frobenius' Theory
3.9 Lie Series, Chow's Theo哪离企换压位四江六激脸rem
3.10 Tensor Field
3.探续省意11 Riemannian Geo工财明标与率整马极香metry
3.12 Symplectic Geometry
References
4. Algebra, Lie Group and Lie Algebra
4.1 Group
4.2 Ring and Algebra
4.3 Homotopy
4.4 Fundamental Group
4.5 Covering Space
4.6 Lie Group
4.7 Lie Algebra of Lie Group
4.8 Structure of Lie Algebra
References
5. Controllability and Observability
5.1 Controllability of Nonlinear Systems
5.2 Observability of Nonlinear Systems
5.3 Kalman Decomposition
References
6. Global Controllability of Affine Control Systems
6.1 From Linear to Nonlinear Systems
6.2 A Sufficient Condition
6.3 Multi-hierarchy Case
6.4 Codim = 1
References
7. Stability and Stabilization
7.1 Stability of Dynamic Systems
7.2 Stability in the Linear Approximation
7.3 The Direct Method of Lyapunov
7.3.1 Positive Definite Functions
7.3.2 Critical Stability
7.3.3 Instability
7.3.4 Asymptotic Stability
7.3.5 Total Stability
7.3.6 Global Stability
7.4 LaSalle's Invariance Principle
7.5 Converse Theorems to Lyapunov's Stability Theorems
7.5.1 Converse Theorems to Local Asymptotic Stability
7.5.2 Converse Theorem to Global Asymptotic Stability
7.6 Stability of Invariant Set
7.7 Input-Output Stability
7.7.1 Stability of Input-Output Mapping
7.7.2 The Lur'e Problem
7.7.3 Control Lyapunov Function
7.8 Region of Attraction
References
8. Deeoupling
8.1 (f,g)-invariant Distribution
8.2 Local Disturbance Decoupling
8.3 Controlled Invariant Distribution
8.4 Block Decomposition
8.5 Feedback Decomposition
References
9. Input-Output Structure
9.1 Decoupling Matrix
9.2 Morgan's Problem
9.3 Invertibility
9.4 Decoupling via Dynamic Feedback
9.5 Normal Form of Nonlinear Control Systems
9.6 Generalized Normal Form
9.7 Fliess Functional Expansion
9.8 Tracking via Fliess Functional Expansion
References
10. Linearization of Nonlinear Systems
10.1 Poincare Linearization
10.2 Linear Equivalence of Nonlinear Systems
10.3 State Feedback Linearization
10.4 Linearization with Outputs
10.5 Global Linearization
10.6 Non-regular Feedback Linearization
References
11 Design of Center Manifold
11.1 Center Manifold
11.2 Stabilization of Minimum Phase Systems
11.3 Lyapunov Function with Homogeneous Derivative
11.4 Stabilization of Systems with Zero Center
11.5 Stabilization of Systems with Oscillatory Center
11.6 Stabilization Using Generalized Normal Form
11.7 Advanced Design Techniques
References
12 Output Regulation
12.1 Output Regulation of Linear Systems
12.2 Nonlinear Local Output Regulation
12.3 Robust Local Output Regulation
References
13 Dissipative Systems
13.1 Dissipative Systems
13.2 Passivity Conditions
13.3 Passivity-based Control
13.4 Lagrange Systems
13.5 Hamiltonian Systems
References
14 L2-Gain Synthesis
14.1 H∞ Norm and//2-Gain
14.2 H∞ Feedback Control Problem
14.3 L2-Gain Feedback Synthesis
14.4 Constructive Design Method
14.5 Applications
References
15 Switched Systems
15.1 Common Quadratic Lyapunov Function
15.2 Quadratic Stabilization of Planar Switched Systems
15.3 Controllability of Switched Linear Systems
15.4 Controllability of Switched Bilinear Systems
15.5 LaSalle's Invariance Principle for Switched Systems
15.6 Consensus of Multi-Agent Systems
15.6.1 Two Dimensional Agent Model with a Leader
15.6.2 n Dimensional Agent Model without Lead
References
16 Discontinuous Dynamical Systems
16.1 Introduction
16.2 Filippov Framework
16.2.1 Filippov Solution
16.2.2 Lyapunov Stability Criteria
16.3 Feedback Stabilization
16.3.1 Feedback Controller Design: Nominal Case
16.3.2 Robust Stabilization
16.4 Design Example of Mechanical Systems
16.4.1 PD Controlled Mechanical Systems
16.4.2 Stationary Set
16.4.3 Application Example
References
Appendix A Some Useful Theorems
A.1 Sard's Theorem
A.2 Rank Theorem
References
Appendix B Semi-Tensor Product of Matrices
B.1 A Generalized Matrix Product
B.2 Swap Matrix
B.3 Some Properties of Semi-Tensor Product
B.4 Matrix Form of Polynomials
References
Index
转载请注明出处安可林文章网 » 非线性控制系统的分析与设计