
Boot买重官准strapping来自算法,指的就是利用有限的样本资料经由多次重复抽样,重新建立起护经溶治两级鱼望卫足以代表母体样本分布的新样本。boots360百科trapping的运用基于很多统计究布办坐室饭学假设,因此假设的成立与盾把否会影响采样的准确性。
- 中文名 Bootstrapping算法
- 应用学科 统计学
- 优点 简单易于操作
- 缺点 假设的成立与否影响采样的准确性
统计学中,b心ootstrapping可以指依赖于重置随机抽样的一切试验。bootstrapping可以用球拉制染抓于计算样本估计的准确性。对于一个采样,我们只能计算出某个统计量(例如均值)的一个取值,无法知道均值统计量的分布情况。但是通过自助法(自举法)我们可以模拟出均值统计量的近似分布。有了分布很多事情就可以做了(比如说有你推出的结果来进而推测实际总体的情况)。
bootstrapping方法的实现很简单,假设抽取的样本大小为n:
调终才卷较找肥每 在原样本中有放回的抽样,抽取n次。每抽一次形成一个新的样本,重复操作,形成很多新样本,通过这些样本就可以计算出样本的一个分布。新样本的数量通常是100来自0-10000。如果计算成本很小,或者对精岩度要求比较高,就增加新写设吃样本的数量。
优点:简单易于操作。
缺点:bo360百科otstrapping的运用基于很多统计学假设,因此假设的成立与否会影响采样的准确性。
转载请注明出处安可林文章网 » Bootstrapping算法