
《凝聚态中的量子场论》是2010年世界图书出版公司出版的图书,作者是纳高萨。本书主要是介绍了凝聚态中的量子收混相油庆方酒李优场论的基础知识及应用。
- 书名 凝聚态中的量子场论
- 别名 quantum field theory in condensed matter physics
- 出版社 世界图书出版公司;
- 出版时间 2010年8月1日
图书信息
书名:凝聚态中的量子场论
出版社: 世界图书出版公司; 第1版 (2010年来自8月1日)
外文书名: quantum field theo同尽杆ry in condensed matter physics
平装: 206页
正文语种: 英语
开本: 普24
isbn: 9787510024054, 7510024056
条形码三联: 9787510024054
商品尺寸: 22.2 x 14.8 x 1 cm
商品重量: 落281 g
品牌: 世界图书出版公司北京公司
内容简介
《凝聚态物理学中的量子场论》内容简介:Condensed场毛验目易识微侵matterphysicsdealswithawidevarietyoftopics,rangingfromgas360百科toliquidsandso笑确明搞刘推演领纪分始lids,aswellas零某攻控plasma,whereowingtotheinterplaybetweenthemotions燃毫劳配受书征刚额ofatremendousnumberofelectronsandnuclei,ri认毛烈号煤增另chvarietiesofphysicalphenomenaoccur.线Quantumfieldtheoryisthemost.
作者简介
作者:(日本)纳高萨(来自N.Nagaosa)
目360百科录
1. Review of Quantum Mechanics and Basic Principles of Field Theory
鲁配拉学极 1.1 Sin必油养油死声仅个gle-Particle Quantum Mechanics
1.2 Many-Particle Quantum Mechanics: Second Quantization..
1.3 The Variation Principle and the Noether Theorem
1.4 Quantization of the Electromagnetic Field
2. Quantization with Path Integral Methods
2.1 Sin化易破双护留九电呢物玉gle-Particle Quantum Mechanics and Path 错德末额鱼矛杂Integrals
2.2 The Path Integral for Bosons
2.3 The Path Integral for Fermions
盐 2.4 The Path Integral for the Gauge F息失祖相调提单难又缺ield
2.鱼季磁眼管灯果5 The Path Integral for the Spin System
3. Symmetr宁形出黑象半y Breaking and Phase Transition
3.1 Spontaneous Symmetry Breaking
3.2 The Goldstone Mode
3.3 Kosterlitz-Thouless Trans盐染片ition
3.4 Lattice Gauge Theory a都请nd the Confinement Problem
4. Simple Examples for the Application of Field Theory
4.或逐决随议肉换谓1 The RPA Theory of a Coulomb Gas
圆菜刘太工西 4.2 The Bogoliubov Theory of Superfluidity
5. Problems 条沉门样代矛缺Related to Superconductivity
5.1 Superconductivity and Path Integrals
5.2 Macroscopic Quantum Effects and Dissipation: The Josephson Jun素林宪ction
5.3 The Supercondu形地保抗设或查ctor-Insulator Phase Tr强帮兵案尼采模片尔ansition in Tw热降孔草给矛劳令伟武半o Dimensions and the Quantum Vortices
6整调切卫模量更赵. Quantum Hall Liquid and the Chern-Simons Gauge Field
6.1 Two-Dimensional Electron System
6.2 Effective Theory of a Quantum Hall Liquid
6.3 The Derivation of the Laughlin Wave Function
Appendix
A. Fourier Transformation
B. Functionals and the Variation Principle
C. Quantum Statistical Mechanics
References
Index