新闻资讯
看你所看,想你所想

国际数学奥林匹克

国际数学奥林匹克(International Mathematical Olympiad,简称扬陆IMO)是世界来自上规模和影响最大的中学生数学学科竞赛活动。由罗马尼亚罗曼(Ro阳况剧率认简man)教授发起。

  • 中文名 国际数学奥林匹克
  • 外文名 International Mathematical Olympiad
  • 简称 IMO
  • 地位 世界规模最大中学生数学竞赛活动
  • 发起人 罗马尼亚罗曼

历史沿革

  它由罗马尼亚罗曼(Roma来自n)教授发起,自1959年7月在罗马尼亚古都布拉索举行第一届竞赛,当时,参加竞赛的学生共有52人,分别来自罗马尼亚、保加利亚、匈牙利、波兰、前捷克斯洛伐克、前德意志民主共和国和前苏联7个国家。每个国家有8名队员,前苏联只派了4名。除1980年由于东道主蒙古经费困难而停赛一年外,每年一届。最初几届只有七、八360百科个国家和地区参加。最初的组织工作由几个参赛国家轮流承担,到了198吸控断0年,国际数学教育委员会专门成立了IMO分会,负责寻么宗社更形过求IMO每年的组织者。到1990年我国举办第31届时,已发展到54个国家养较和地区的308名选手。到1999年在罗马尼亚举办第40届时,,又增加到81个国家和地区,共450名选手。到2012年在阿根廷举办第53届时,又增加到100个国家和英每均选掌书握策处承548名选手。我国第一次派学生参加国际数学奥林匹克是1985年,当时仅派两名学生,并且成绩一般。督根我国第一次正式派出6人代表队参加国际数学奥林匹克是19达固石诉参振某86年。

  经过50多年的发展,国际数学奥林匹克的运转逐步制度化、规范化,有了一整套约定俗成的常规,并为历届东道主所遵循。

宗旨

 取苏约核 服务于全世界学习数学,喜欢数学,热爱数学的青少年儿童;服务于世界各地致力于少年儿童数学思维培养与奥数早期教育充击相手三建更煤析防的机构与人士;服务于世界各地致力于少年儿倒句管征士童文化交流与素质培养的机构与人士。

  正如专家们指庆逐绍出:IMO的重大意义之一是促进创造性的思维训练,对于科学技术迅速发展的今天,这种训练尤为重要。数学不仅要教会学生运算技巧,更重要的是培养学生有严密的思维逻辑,有灵活的分析和解决问题的方法。

国际数学奥林匹克

染兰候生着玉督利田致长  国际数学奥林匹克竞赛对于促进中学数学教育的改革,激发青少年对数学的学习兴趣,选拔优秀的数学人才等板庆手续京都起到了越来越大的作用,受到人们的普析探笑策划遍重视。数学奥林匹克传统将格小城杨采额约刘皮陆永远发扬光大。

规则

  一般每届竞赛从各参赛国提供的预选题中选用六道题。考试分两天进行,每天来自4.5小时做三道题,每题7分,满分42分。参赛者独立做题,只对个人评分和奖励,没有团体奖。据360百科此,自1983年第24届以来,虽然每一个代表队(6个人为组员)习惯上计各队总片重轴六分,排列各参赛国名次(因各队参赛人数一样多)。但组织委员会不向团体优胜者颁奖,因为IMO医给围做根只是个人的竞赛,不是团体的竞赛。

试题

  IMO的试题不局限于中学数学的内容,它包血多树缺到含了初等数学,即所谓微积分学前数学的基本部分,甚至也包含了少部分微积分学的内容。随着年代的推移,试题难度也越来越大。试题的难度不在于解决试题需要许多高深的知识,而山曲军担年独较历化便异在于对数学本质的洞察力、创造力和数学机智。试题范围虽然从来演卷压没有正式规定,但主要为数论、组合数学、数列、不等式、函数方程和几何等。在不少届的试题中,常出现包含当年年度数学的趣味数论问题,显示出数学家们的幽默风趣。有些题目给出比恰好推出所需结论的条件宽许多的条件,而有些题目又只让你推出很强结论中的一少部分,与通常类型的由恰当条件推出恰当结线到走论的题目相比,这些题目的真正目的在于考你的灵活性、技巧性。有些题目风格迥异,思维方式新颖,只有运续课如善杆用某一技巧才能解决,对这样的题目,通常的思维方式也就不可能引杨难导出正确的解题思路。有些题目的解法对我们启示,决不限于是一种针对具体问题的具体技巧,而是一种精深的数学思维方式。

国际数学奥林匹克

章程

  IMO的运转方式已经制度化,其竞精跳过额亚算范输铁身鸡赛章程规定:

  1.一年一度的IMO于7月举行。东道国由参赛国(或地区)轮流担任,所需经费由东道右怀走补命国负担,整个活动由东道国出任主席,由各国领队组成的主试委员会主持。试题与解答由参赛国提供,每国3至5道题(也可以不提供),东道国不提供试题,而由东道国组成选题委于财校改构足量则员会,对各国提供的试题进行评议与初选,主要考虑试题是否与以往的试题重复,并把试题按代数、数论、几何、组合数学、组合几何等分类门握甚胞存委于料轴,确定试题难度(A、B、C三级),选择30题左右,如果这些题有新解法的话,还要求提供原解法以外的解法,译成英文供主试委员选用。

  2.每个参赛团组织一常治培个参赛队,成员不超环早座培利亲过8人,其中队员不超过6人(是中学或同等级学校学生,年龄不超过20周岁),正、副领队各1人。

  3.IMO的官方用语为英语、德语、俄语、法语,而参赛国大约需要26种文字,届时由各领队把试卷译为本国语言,并经协调委员会认可。试卷先由各国的正、副领队评判,再与协调委员会协商(每个协调员负责一个试题的评分),如有分歧,由主试委员会仲裁,协商工作是在信任与友好的气氛中进行的。

  4.IMO的获奖人数占参赛人数的一半,在评奖时,并不排出个人第一、第二的顺序,而是根据分数段评出一、二、三等奖获得者,其比例一般近似为1:2:3。此外,主试委员会还可因在某个试题上做出了非常漂亮(指思路简洁巧妙,有独创性)或在数学上有意义的解答的学生给予特别奖,获得特别奖的人数甚少。与此同时,为避免再次出现1980年那样的中断,IMO设立一个专门的委员会(有的译为场所委员会)负责确定各届的东道主。按IMO的规定,每一届的东道主必须向上一届的所有参赛国发出邀请,而新参加的国家则应当向东道主表明参加的意愿,再由东道主发出邀请。

  1988年第29届,根据香港的建议,IMO首次设立了荣誉奖,奖给那些虽然未得金、银、铜牌,但至少有一道题得满分(7分)的选手。这一措施,大大调动了各参赛国及参赛选手的积极性。

  IMO的精神就是奥林匹克精神:"重要的不在于取胜,而在于参加。"

国际数学奥林匹克

历届比赛

  历届IMO的主办国,总分冠军及参赛国(地区)数为:

  年份

  届次

  东道主

  总分冠军

  参赛国家、地区数

  1959

  1

  罗马尼亚

  罗马尼亚

  7

  1960

  2

  罗马尼亚

  前捷克斯洛伐克

  5

  1961

  3

  匈牙利

  匈牙利

  6

  1962

  4

  前捷克斯洛伐克

  匈牙利

  7

  1963

  5

  波兰

  前苏联

  8

  1964

  6

  前苏联

  前苏联

  9

  1965

  7

  前东德

  前苏联

  8

  1966

  8

  保加利亚

  前苏联

  9

  1967

  9

  前南斯拉夫

  前苏联

  13

  1968

  10

  前苏联

  前东德

  12

  1969

  11

  罗马尼亚

  匈牙利

  14

  1970

  12

  匈牙利

  匈牙利

  14

  1971

  13

  前捷克斯洛伐克

  匈牙利

  15

  1972

  14

  波兰

  前苏联

  14

  1973

  15

  前苏联

  前苏联

  16

  1974

  16

  前东德

  前苏联

  18

  1975

  17

  保加利亚

  匈牙利

  17

  1976

  18

  澳大利亚

  前苏联

  19

  1977

  19

  南斯拉夫

  美国

  21

  1978

  20

  罗马尼亚

  罗马尼亚

  17

  1979

  21

  美国

  前苏联

  23

  1981

  22

  美国

  美国

  27

  1982

  23

  匈牙利

  前西德

  30

  1983

  24

  法国

  前西德

  32

  1984

  25

  前捷克斯洛伐克

  前苏联

  34

  1985

  26

  芬兰

  罗马尼亚

  42

  1986

  27

  波兰

  美国、前苏联

  37

  1987

  28

  古巴

  罗马尼亚

  42

  1988

  29

  澳大利亚

  前苏联

  49

  1989

  30

  前西德

  中国

  50

  1990

  31

  中国

  中国

  54

  1991

  32

  瑞典

  前苏联

  56

  1992

  33

  俄罗斯

  中国

  62

  1993

  34

  土耳其

  中国

  65

  1994

  35

  中国香港

  美国

  69

  1995

  36

  加拿大

  中国

  73

  1996

  37

  印度

  罗马尼亚

  75

  1997

  38

  阿根廷

  中国

  82

  1998

  39

  中华台北

  伊朗

  84

  1999

  40

  罗马尼亚

  中国、俄罗斯

  81

  2000

  41

  韩国

  中国

  82

  2001

  42

  美国

  中国

  83

  2002

  43

  英国

  中国

  84

  2003

  44

  日本

  保加利亚

  82

  2004

  45

  希腊

  中国

  85

  2005

  46

  墨西哥

  中国

  98

  2006

  47

  斯洛文尼亚

  中国

  104

  2007

  48

  越南

  俄罗斯

  93

  2008

  49

  西班牙

  中国

  103

  2009

  50

  德国

  中国

  104

  2010

  51

  哈萨克斯坦

  中国

  105

  2011

  52

  荷兰

  中国

  101

  2012

  53

  阿根廷

  韩国

  100

201354哥伦比亚中国97
201455南非中国106
201556泰国美国104

转载请注明出处安可林文章网 » 国际数学奥林匹克

相关推荐

    声明:此文信息来源于网络,登载此文只为提供信息参考,并不用于任何商业目的。如有侵权,请及时联系我们:fendou3451@163.com