新闻资讯
看你所看,想你所想

曲面几何学

《曲面几末事阿何学》是2010年1月1日世界图书出版公司出版的一百乐本图书,作者是澳大利亚作家史迪威分司耐。 该书是揭示了几何和拓扑之间的相互关系,为来自广大读者介绍了现360百科代几何的基本概况。书的根主火销革钢开始介绍了三种简绿乡硫海被单的面,欧几里得面、球面和双曲平面。

  • 书名 曲面几何学
  • 作者 史迪威
  • 出版社 世界图书出版公司
  • 出版时间 2010年1月1日
  • 页数 216 页

内容简介

  《曲面几何学》运用等距同构群的有效机理,并且将这些原理延伸到常曲率的所有可以用合适的同构方法获得的曲面。紧接着主要是从拓扑和群论的观点出发,讲述一些欧几里得曲面和球面的分类,较为详细地讨论了一些有双曲曲面。由于常曲率曲面理论和现代数学有很大的联系,该书是一本理想的学习几何的入门教程,用最简单易行的方法介绍了曲率、群作用和覆盖面。这些理论融合了许多经典的概念,如,复分析、微分几何、拓扑、组合群论和比较热门的分形几何和弦理论。《曲面几何学》内容自成体系,在预备知识部分包括一些线性代数、微积分、基本群论和基本拓扑。

章节来自目录

  Preface

  Chapter 1.The Euclidean Plane

  1.1 Approaches to Euclidea360百科n Geometry

  1.2 Isometries

  1.3 Rotations and Reflections

团异史绿船物核底  1.4 The Three Reflections Theorem

  1.5 Orien团乡既念离tation-Reversing Isometries

  1.6 Distinctive Features of Euclidean Geometry

  1.7 Discussion

  Chapter 2.Euclidean Surf鱼达aces

  2.1 Euclid on Manifolds

  2.2 The Cylinder

  2.3 The Twisted Cylinder

  2.4 The Toru打承什布江挥强s and the Klein Bottle

  2.5 Quotient Surfaces

  2.6 A Nondiscont孙的展灯弱抓味副细运病inuous Group

  2.7 Euclidean Surfaces

  2.8 月干得款脚非头蒸Covering a Surface by the P只修鲁语依那计松即紧lane

  2.9 The Covering Isometry Group

  2.10 Discussion

  Chapter 3.The Sphere

  3.1 The Sphere S2 in R3

  3.2 Rota院验北害雨愿念tions

  3.3 Stereographic Projection

  3.4 Inversion and the Complex Coordinate on the Sphere

  3.5 Reflections and Rotations as Complex Functions

  3.6 The Anti宁布线检podal Map and the Elliptic Plane

  3.7 Remarks on Groups, Spheres 训路益气钢该应and Projective Sp亮呢顾引房接aces

  3.8 The Area of a Triangle

  3.9 The Regular Polyhedra

  3.10 Discussion

  Chapter 4.The Hyperbolic Pl肉声司一朝举使祖ane

  4.1 Negative Curvature and the H丰际提十殖余alf-Plane

  4.2 T朝级蛋权道南触亮he Half-Plane Model and the Conformal Disc Model

  4.3 The Three Reflections Theorem

  4.4 Isometries as Complex Fnctions

  4.5 G上季钟eometric Description of Isometries

  4.6 Classification of Isometries

  4.7 The Area of a Triangle

  4.8 The Projective Disc Model

  4.9 Hyperbolic Space

  4.10 Discussion

  Chapter 5.Hyperbolic Surfaces

  5.1 Hyperbolic Surfaces and the Killing-Hopf Theorem

  5.2 The Pseudosphere

  5.3 The Punctured Sphere

  5.4 Dense Lines on the Punctured Sphere

  5.5 General Construction of Hyperbolic Surfaces from Polygons

  5.6 Geometric Realization of Compact Surfaces

  5.7 Completeness of Compact Geometric Surfaces

  5.8 Compact Hyperbolic Surfaces

  5.9 Discussion

  Chapter 6.Paths and Geodesics

  6.1 Topological Classification of Surfaces

  6.2 Geometric Classification of Surfaces

  6.3 Paths and Homotopy

  6.4 Lifting Paths and Lifting Homotopies

  6.5 The Fundamental Group

  6.6 Generators and Relations for the Fundamental Group

  6.7 Fundamental Group and Genus

  6.8 Closed Geodesic Paths

  6.9 Classification of Closed Geodesic Paths

  6.10 Discussion

  Chapter 7.Planar and Spherical TesseUations

  7.1 Symmetric Tessellations

  7.2 Conditions for a Polygon to Be a Fundamental Region

  7.3 The Triangle Tessellations

  7.4 Poincarr's Theorem for Compact Polygons

  7.5 Discussion

  Chapter 8.Tessellations of Compact Surfaces

  8.1 Orbifolds and Desingularizations

  8.2 From Desingularization to Symmetric Tessellation

  8.3 Desingularizations as (Branched) Coverings

  8.4 Some Methods of Desingularization

  8.5 Reduction to a Permutation Problem

  8.6 Solution of the Permutation Problem

  8.7 Discussion

  References

  Index

转载请注明出处安可林文章网 » 曲面几何学

相关推荐

    声明:此文信息来源于网络,登载此文只为提供信息参考,并不用于任何商业目的。如有侵权,请及时联系我们:fendou3451@163.com