新闻资讯
看你所看,想你所想

海外优秀数学类教材系列丛书·应用多元统计分析方法

《海外优秀数学类教材系列丛书·应用多元统计分来自析方法》是2005年6月1日高等教育出版社出版的图书,作者是(美国)约翰逊。

  • 书名 海外优秀数学类教材系列丛书·应用多元统计分析方法
  • 作者 (美国)约翰逊
  • 出版社 高等教育出版社
  • 出版时间 2005年6月1日
  • 页数 567 页

内容简介

  《应用多元统计分析方法-影印版》设有大量的例题与练习题,实用面丰富,统计思维清晰。《应用多元统计分析方法-影印版》适用于高等院校统计学专业和理工科各专业本科生和研究生作为双语教材使用。应用多元回归分析方法,样本相关,多元数据点图,特征值和特征向,复合分析原理,因子分析,判别分析,逻辑斯谛回归方法,聚类分析,均值向量和方差-协方差矩阵,方差多元分析,预测模型和多元回归。《应用多元统计分析方法-影印版》统计内容覆盖面广于国内的概率统计教材,内容安排颇有新意,例如,在处理回归分析时,强调了从建模的观点与需要来考虑。

目录

  1.APPLIED MULTIVARIATE METHODS

  1.1 An Overview of Multivariate Methods 1

  Variable-and Individual-Directed Techniques 2

  Creating New Variables 2

  Principal Com衡胞ponents Analysis 3

  Factor Analysis 3

  Discriminant An酸紧怕市官味随层动践氧alysis 4

  Canonical Discriminant Ana进菜齐房克甲耐控路装帝lysis 5

  Logistic Regression 5

  Cluster Analysis 5

  Multivariate Analysis of Variance 6

  Canonical Variates Analysis 7

  Canonical Correlation Analysis 7

  Where to Fin来自d the Preceding Topics 7

  1.2 Two Examples 8

  Independe360百科nce of Experimental Units 11

  1.3 Types of Var门行顶破移对测胜iables U

  1.4 Data Matric卫也次养围家河es and Vectors 12

  Variable No析月担伤安丰她元tation 13

  Data Matrix 13

  Data Vectors 13

  Data Subscripts 14

  1.5 层尔活础急普乡The Multivariate Normal Distribution 15

  S赶缩担然很甚放少波读乱ome Definitions 15

  Summarizing Multivariate Distributions 16

  Mean Ve读继每北金何许乐游ctors and Variance-Covariance Matrices 16

  Correlations 督永and Correlation Matrices 17

  The Multivariate Normal Probability Density Function 19

  Bivariate Normal 八求酒究久Distributions 19

  1.6 Statistical Computing 22

  Cautions About Computer 服际长Usage 22

  M有族issing Values 22

  Repl穿效动批布acing Missing Values by Ze医引温ros 23

  R几企绝宣脚化eplacing Missing Values by Averages 23

  Removing 物球何冷引往法结张Rows of the Data Matrix 2县导翻宣微液得3

  Sampling Strategies 24

  Data Entry Errors and Data Verification 24

  1.7 Multivariate Outliers 25

  Locating Outliers 25

  Dealing with Outliers 25

  Outliers May Be Influential 26

  1.8 Multivariate Summary Statistics 26

  1.9 Standardized Data and/or Z Scores 27

  Exercises 28

  2.SAMPLE CORRELATIONS

  2.1 Statistical Tests and Confidence Intervals 35

  Are the Correlations Large Enough to Be Useful? 36

  Confidence Intervals by the Chart Method 36

  Confidence Intervals by Fisher's Approximation 38

  Confidence Intervals by Ruben's Approximation 39

  Variable Groupings Based on Correlations 40

  Relationship to Factor Analysis 46

  2.2 Summary 46

  Exercises 47

  3.MULTIVARIATE DATA PLOTS

  3.1 Three-Dimensional Data Plots 55

  3.2 Plots of Higher Dimensional Data 59

  Chernoff Faces 61

  Star Plots and Sun-Ray Plots 63

  Andrews' Plots 65

  Side-by-Side Scatter Plots 66

  3.3 Plotting to Check for Multivariate Normality 67

  Summary 73

  Exercises 73

  4.EIGENVALUES AND EIGENVECTORS

  4.1 Trace and Determinant 77

  Examples 78

  4.2 Eigenvalues 78

  4.3 Eigenvectors 79

  Positive Definite and Positive Semidefinite Matrices 80

  4.4 Geometric Descriptions (p = 2) 82

  Vectors 82

  Bivariate Normal Distributions 83

  4.5 Geometric Descriptions (p = 3) 87

  Vectors 87

  Trivariate Normal Distributions 87

  4.6 Geometric Descriptions (p > 3) 90

  Summary 91

  Exercises 91

  5.PRINCIPAL COMPONENTS ANALYSIS

  5.1 Reasons for Using Principal Components Analysis 93

  Data Screening 93

  Clustering 95

  Discriminant Analysis 95

  Regression 95

  5.2 Objectives of Principal Components Analysis 96

  5.3 Principal Components Analysis on the Variance-Covariance

  Matrix 96

  Principal Component Scores 98

  Component Loading Vectors 98

  5.4 Estimation of Principal Components 99

  Estimation of Principal Component Scores 99

  5.5 Determining the Number of Principal Components 99

  Method 1 100

  Method 2 100

  5.6 Caveats 107

  5.7 PCA on the Correlation Matrix P 109

  Principal Component Scores 110

  Component Correlation Vectors 110

  Sample Correlation Matrix 110

  Determining the Number of Principal Components 110

  5.8 Testing for Independence of the Original Variables 111

  5.9 Structural Relationships 111

  5.10 Statistical Computing Packages 112

  SASR PRINCOMP Procedure 112

  Principal Components Analysis Using Factor Analysis

  Programs 118

  PCA with SPSS's FACTOR Procedure 124

  Summary 142

  Exercises 142

  6. FACTOR ANALYSIS

  6.1 Objectives of Factor Analysis 147

  6.2 Caveats 148

  6.3 Some History of Factor Analysis 148

  6.4 The Factor Analysis Model 150

  Assumptions 150

  Matrix Form of the Factor Analysis Model 151

  Definitions of Factor Analysis Terminology 151

  6.5 Factor Analysis Equations 151

  Nonuniqueness of the Factors 152

  6.6 Solving the Factor Analysis Equations 153

  ……

  7.DISCRIMINANT ANALYSIS

  8.LOGISTIC REGRESSION METHODS

  9.CLUSTER ANALYSIS

  10.MEAN VECTORS AND VARIANCE-COVARIANCE MATRICES

  11.MULTIVARIATE ANALYSIS OF VARIANCE

  12.PREDICTION MODELS AND MULTIVARIATE REGRESSION

  APPENDIX A:MATRIX RESULTS

  APPENDIX B:WORK ATTITUDES SURVEY

  APPENDIX C:FAMILY CONTROL STUDY

  REFERENCES

  INDEX

转载请注明出处安可林文章网 » 海外优秀数学类教材系列丛书·应用多元统计分析方法

相关推荐

    声明:此文信息来源于网络,登载此文只为提供信息参考,并不用于任何商业目的。如有侵权,请及时联系我们:fendou3451@163.com