
《经典和现代回归分析及其应用》是2005年5月1日高等教育出版出版的图书,作者是麦尔斯。本书主要介绍了回归分析、多种回归模型以及最佳模型选择准则等内容来自。
- 书名 经典和现代回归分析及其应用
- 别名 classical and modern regression with applications
- 作者 (美)麦尔斯
- 出版社 高等教育出版社
- 出版时间 2005年5月1日
内容简跟我队味续请介
《经典和现代回归分析及其应用》纯英文影印版,Manyvolumeshave建值龙迫beenwrittenbystatisticiansandscientistswiththeresult交树命社概beingthatthearsenalofeffectiveregressionmethodshasincreasedma审女nyfold. Myintent来自forthissec360百科ondeditionistop着名改司伯编rovidearathersubstantia走lincreaseinmaterialrelatedtoclassicalregressionwhilecontinuingtointroducerelevantnewandmod诗雷气erntechniqu兴找阿季场务他烈望绿养es.Ihaveincludedmajorsupplementsinsimplelinearregressionthatdealwithsimultaneousinfluence,maximumlikeliho渐板上局验逐服视界odestimation胞行社ofparameters,andtheplottingofresiduals.Inmultipleregression,newandsubstantialsectionsontheuseofthegenerallinearhypothesis,indicatorvariables,thegeometryofleastsquares,andrelationshiptoANOVAmodelsareadded.
作者简介
束陈氧七害吗意十然械作者:(美国)麦尔斯(My许费使采灯另富ers.R.H)
目录
CHAPTER 1
INTRODUCTION: REGRESSION ANALYSIS
Regression mo答存型九讲知旧副dels
Formal uses of regression analysis
The data base
References
CHAPTER 2
THE SIMPLE LINEAR REGRESSION MODEL
The model descript溶城氧脸米缺才英回ion
Assumption结本s and interpr来自etation o计二山语负量免掌保f model par360百科ameters
Least squares f防ormulation
Maximum likelihood estimation
Pa施官所孔许rtioning total variability
Tests of hypothesis on slope and intercept
Simple reg误元儿优或如刚汉士结总ression through the origin (Fixed intercept)
Quality of fitted model
Confidence intervals on m项音阿ean response and prediction intervals
些义Simultaneous inference i食权氧绍n simple linear regression
A complete ann罪调则道预圆弦otated computer printout
A look at residuals
Both x and y random
Exercises
References
CHAPTER 3
THE MULTIPLE LINE袁收讲富便祖AR REGRESSION MODEL
Model description and assumptions
The general linear mode] and the least squares procedure
Properties of least squares estimators under ideal conditions
Hypothesis testing in multiple linear regression
Confide记nce intervals and prediction intervals in multiple regressions
学记 Data with repeated observ问台里志义团把女粮举ations
Simulta乐燃鲜叶越neous inference in multiple regression
Multicollinearity in mult卷令规材川溶副福括稳扩iple regression data
Quality fit, quality prediction, and the HAT matrix
Categorical or indicator variables (Regression models and ANOVA models)
Exerci种班经胞让露较艺跑ses
References
CHAPTER 4
CRITERIA FOR CHOICE OF BEST MODEL
Standard criteria for comparing models
Cross validation for model selection and determination of model performance
Conceptual predictive criteria (The Cp statistic)
Sequential variable selection procedures
Further comments and all possible regressions
Exercises
References
CHAPTER 5
ANALYSIS OF RESIDUALS 209
Information retrieved from residuals
Plotting of residuals
Studentized residuals
Relation to standardized PRESS residuals
Detection of outliers
Diagnostic plots
Normal residual plots
Further comments on analysis of residuals
Exercises
References
CHAPTER 6
INFLUENCE DIAGNOSTICS
Sources of influence
Diagnostics: Residuals and the HAT matrix
Diagnostics that determine extent of influence
Influence on performance
What do we do with high influence points?
Exercises
References
CHAPTER 7
NONSTANDARD CONDITIONS, VIOLATIONS OF ASSUMPTIONS,AND TRANSFORMATIONS
Heterogeneous variance: Weighted least squares
Problem with correlated errors (Autocorrelation)
Transformations to improve fit and prediction
Regression with a binary response
Further developments in models with a discrete response (Poisson regression)
Generalized linear models
Failure of normality assumption: Presence of outliers
Measurement errors in the regressor variables
Exercises
References
CHAPTER 8
DETECTING AND COMBATING MULTICOLLINEARITY
Multicollinearity diagnostics
Variance proportions
Further topics concerning multicollinearity
Alternatives to least squares in cases of multicollinearity
Exercises
References
CHAPTER 9
NONLINEAR REGRESSION
Nonlinear least squares
Properties of the least squares estimators
The Gauss-Newton procedure for finding estimates
Other modifications of the Gauss-Newton procedure
Some special classes of nonlinear models
Further considerations in nonlinear regression
Why not transform data to linearize?
Exercises
References
APPENDIX A
SOME SPECIAL CONCEPTS IN MATRIX ALGEBRA
Solutions to simultaneous linear equations
Quadratic form
Eigenvalues and eigenvectors
The inverses of a partitioned matrix
Sherman-Morrison-Woodbury theorem
References
APPENDIX B
SOME SPECIAL MANIPULATIONS
Unbiasedness of the residual mean square
Expected value of residual sum of squares and mean square
for an underspecified model
The maximum likelihood estimator
Development of the PRESS statistic
Computation of s _ i
Dominance of a residual by the corresponding model error .Computation of influence diagnostics
Maximum likelihood estimator in the nonlinear model
Taylor series
Development of the C~-statistic
References
APPENDIX C
STATISTICAL TABLES
INDEX
转载请注明出处安可林文章网 » 经典和现代回归分析及其应用