新闻资讯
看你所看,想你所想

经典和现代回归分析及其应用

《经典和现代回归分析及其应用》是2005年5月1日高等教育出版出版的图书,作者是麦尔斯。本书主要介绍了回归分析、多种回归模型以及最佳模型选择准则等内容来自

  • 书名 经典和现代回归分析及其应用
  • 别名 classical and modern regression with applications
  • 作者 (美)麦尔斯
  • 出版社 高等教育出版社
  • 出版时间 2005年5月1日

内容简跟我队味续请

  《经典和现代回归分析及其应用》纯英文影印版,Manyvolumeshave建值龙迫beenwrittenbystatisticiansandscientistswiththeresult交树命社概beingthatthearsenalofeffectiveregressionmethodshasincreasedma审女nyfold. Myintent来自forthissec360百科ondeditionistop着名改司伯编rovidearathersubstantialincreaseinmaterialrelatedtoclassicalregressionwhilecontinuingtointroducerelevantnewandmod诗雷气erntechniqu兴找阿季场务他烈望绿养es.Ihaveincludedmajorsupplementsinsimplelinearregressionthatdealwithsimultaneousinfluence,maximumlikeliho渐板上局验逐服视界odestimation胞行社ofparameters,andtheplottingofresiduals.Inmultipleregression,newandsubstantialsectionsontheuseofthegenerallinearhypothesis,indicatorvariables,thegeometryofleastsquares,andrelationshiptoANOVAmodelsareadded.

作者简介

  束陈氧七害吗意十然械作者:(美国)麦尔斯(My许费使采灯另富ers.R.H)

目录

  CHAPTER 1

  INTRODUCTION: REGRESSION ANALYSIS

  Regression mo答存型九讲知旧副dels

  Formal uses of regression analysis

  The data base

  References

  CHAPTER 2

  THE SIMPLE LINEAR REGRESSION MODEL

  The model descript溶城氧脸米缺才英回ion

  Assumption结本s and interpr来自etation o计二山语负量免掌保f model par360百科ameters

  Least squares formulation

  Maximum likelihood estimation

  Pa施官所孔许rtioning total variability

  Tests of hypothesis on slope and intercept

  Simple reg误元儿优或如刚汉士结总ression through the origin (Fixed intercept)

  Quality of fitted model

  Confidence intervals on m项音阿ean response and prediction intervals

  些义Simultaneous inference i食权氧绍n simple linear regression

  A complete ann罪调则道预圆弦otated computer printout

  A look at residuals

  Both x and y random

  Exercises

  References

  CHAPTER 3

  THE MULTIPLE LINE袁收讲富便祖AR REGRESSION MODEL

  Model description and assumptions

  The general linear mode] and the least squares procedure

  Properties of least squares estimators under ideal conditions

  Hypothesis testing in multiple linear regression

  Confidence intervals and prediction intervals in multiple regressions

 学记 Data with repeated observ问台里志义团把女粮举ations

  Simulta乐燃鲜叶越neous inference in multiple regression

  Multicollinearity in mult卷令规材川溶副福括稳扩iple regression data

  Quality fit, quality prediction, and the HAT matrix

  Categorical or indicator variables (Regression models and ANOVA models)

  Exerci种班经胞让露较艺跑ses

  References

  CHAPTER 4

  CRITERIA FOR CHOICE OF BEST MODEL

  Standard criteria for comparing models

  Cross validation for model selection and determination of model performance

  Conceptual predictive criteria (The Cp statistic)

  Sequential variable selection procedures

  Further comments and all possible regressions

  Exercises

  References

  CHAPTER 5

  ANALYSIS OF RESIDUALS 209

  Information retrieved from residuals

  Plotting of residuals

  Studentized residuals

  Relation to standardized PRESS residuals

  Detection of outliers

  Diagnostic plots

  Normal residual plots

  Further comments on analysis of residuals

  Exercises

  References

  CHAPTER 6

  INFLUENCE DIAGNOSTICS

  Sources of influence

  Diagnostics: Residuals and the HAT matrix

  Diagnostics that determine extent of influence

  Influence on performance

  What do we do with high influence points?

  Exercises

  References

  CHAPTER 7

  NONSTANDARD CONDITIONS, VIOLATIONS OF ASSUMPTIONS,AND TRANSFORMATIONS

  Heterogeneous variance: Weighted least squares

  Problem with correlated errors (Autocorrelation)

  Transformations to improve fit and prediction

  Regression with a binary response

  Further developments in models with a discrete response (Poisson regression)

  Generalized linear models

  Failure of normality assumption: Presence of outliers

  Measurement errors in the regressor variables

  Exercises

  References

  CHAPTER 8

  DETECTING AND COMBATING MULTICOLLINEARITY

  Multicollinearity diagnostics

  Variance proportions

  Further topics concerning multicollinearity

  Alternatives to least squares in cases of multicollinearity

  Exercises

  References

  CHAPTER 9

  NONLINEAR REGRESSION

  Nonlinear least squares

  Properties of the least squares estimators

  The Gauss-Newton procedure for finding estimates

  Other modifications of the Gauss-Newton procedure

  Some special classes of nonlinear models

  Further considerations in nonlinear regression

  Why not transform data to linearize?

  Exercises

  References

  APPENDIX A

  SOME SPECIAL CONCEPTS IN MATRIX ALGEBRA

  Solutions to simultaneous linear equations

  Quadratic form

  Eigenvalues and eigenvectors

  The inverses of a partitioned matrix

  Sherman-Morrison-Woodbury theorem

  References

  APPENDIX B

  SOME SPECIAL MANIPULATIONS

  Unbiasedness of the residual mean square

  Expected value of residual sum of squares and mean square

  for an underspecified model

  The maximum likelihood estimator

  Development of the PRESS statistic

  Computation of s _ i

  Dominance of a residual by the corresponding model error .Computation of influence diagnostics

  Maximum likelihood estimator in the nonlinear model

  Taylor series

  Development of the C~-statistic

  References

  APPENDIX C

  STATISTICAL TABLES

  INDEX

转载请注明出处安可林文章网 » 经典和现代回归分析及其应用

相关推荐

    声明:此文信息来源于网络,登载此文只为提供信息参考,并不用于任何商业目的。如有侵权,请及时联系我们:fendou3451@163.com