新闻资讯
看你所看,想你所想

杨庆之

杨庆之,男,1985年7月放害序值宜溶养本科毕业于南来自开大学数学系,1988卫言病值年7月研究生毕帝兰林业于河北师范大学,其后至1993年7月任教于河北师范大学,1997年5月在中国科学院应用数学所获博士学位,1999年5月获中国科学院博士后。199行宗日9年6月就职于南开大学数学科学学院。

  • 中文名称 杨庆之
  • 外文名称 杨庆之
  • 别名 杨庆之
  • 国籍 中国

简介

  南开大学数学科学学院科学与工程计算系,教授,博士生导师,系主任。

  研究方向:最优化方法,数值多重线性代数。具体地,主要研究来自经济、金融、交通、通讯等工程实际部门的优化问题及其他相关问题的理论和算法。

基金及社会兼职

  主持国家自然科学基金一项,教育部留学回国人员启动基金一项;参加教育部重大项目一项。

  《高校计算来自数学学报》编委,中国计算数学会常务理事,天津市计算数学会理事长,中国360百科运筹学会数学规划分会常务理事,天津工业与应用数学会理事,美国Math. Review评论员。

访问经历

  1993年9月- 1994年6月,北京大学数学系访问学者;

  2计庆保整005年9月- 2006年9月,美国Minn来自esota 大学访问学者。

主要科研论文

  1. Yuning Yang and Qingzhi Yang, So360百科me modified relaxed alternating projection methods for solving the two-sets convex feasibility problem, Optimization, published online, (Jan.,2012); (SCI)

  2. Yuning Yang and Qingzhi Yang, On solving biquad队路画或ratic optimization via semidefinite relaxat亚席抓胜死丰置越孩由ion , Computati压员飞onal Optimization and Applications, 53(2012); (S与边背常至CI)

  3. Qingzhi Yang and Yu数毛乎请玉ning Yang, Further results for Perron-Frobenius theorem for nonnegative tensors II, SIAM J. Matrix Anal. and Appl, 32(4)(2011); (SCI)

  4. Jinling Zhao and Qingzhi Yang, Self-ada换项清品防害本绝况天知ptive projection methods for the multiple-sets split feasibility problem, Inverse Problems, 27(组带气究间2011); (SCI)

  5. Yuning Y素管ang and Qingzhi Yang, Singular values of nonnegative rectan试七比境gular ten慢烟刘尼单血富书sors, Frontiers Math. China, 6(2011); (SCI)

  6. Zhongwen Wang, Qingzhi Yang and Yuning Yang, The relaxed inexact projection methods for the split feasibility problem, Applied Math. and Com雷微谁子putation, 217(2011); (SCI)

  7.Yuning Ya采察棉目耐史卫ng and Qingzhi Y站景历利室曾其药审ang, Further results for Perron-Frobenius theorem for nonnegative tensors, SIAM J. Matrix Anal. and Appl, 31(5)(2010); (SCI)

  8.Jinling Zhao拿着课直强电及脚业含许, Qingzhi Yang and Hongxiu Gao, A note o尼片n Solodov and Tseng's methods for maximal monotone mappings, Journal of Computational and Applied Mathematics, 234(5)(2010); (SCI)

  9. Qinggang Wang, Jinling Zhao and Qingzhi Yang, Some non-interior path-following methods based on a scaled central path for linear complementarity problems, Computational Optimization and Applications, 46(2010);(SCI)

  10. Jinling Zhao and Qingzhi Yang, Weak co-coercivity and its applications in several algorithms for solving variational inequalities, Applied Mathematics and computation, 201(2008); (SCI)

  11. Qingzhi Yang and Jinling Zhao,Some remarks on convex feasibility problem and best approximation problems, Numerical Mathematics: Theory, Method and Applications, 1(2008); (SCIE)

  12. Jinling Zhao and Qingzhi Yang: A note on Krasnoselski-Mann theorem and its generalizations, Inverse Problems, 23(2007);(SCI)

  13. Qingzhi Yang: On the generalized system for relaxed cocoercive variational inequalities and projection methods, Journal of Optimization Theory and Applications, 130(2006); (SCI)

  14. Qingzhi Yang and Jinling Zhao: Generalized KM theorems and their applications, Inverse Problems, 22 (2006); (SCI)

  15. 杨庆之,赵金玲:分裂可行问题的投影算法,计算数学,28(2006);

  16. Qingzhi Yang: On the variable-step relaxed projection algorithm for variational inequalities, Journal of Mathematical Analysis and Applications, 302 (2005); (SCI)

  17. Qingzhi Yang: A new proof of strong duality theorem for semidefinite programming, Journal of Mathematical Analysis and Applications, 303 (2005); (SCI)

  18. Jinling Zhao and Qingzhi Yang: Several solution methods for the splitting feasibility problem, Inverse Problems, 21 (2005); (SCI)

  19. Qingzhi Yang: The revisit of a projection algorithm for variational inqualities, Journal of Industrial and Management Optimization, 1(2005); (SCI)

  20. Qingzhi Yang: The relaxed CQ algorithm solving the splitting feasibility problem, Inverse Problems, 20 (2004); (SCI)

  21. Qingzhi Yang and Hong Yu: Discretization method for semidefinite programming, Computers and Mathematics with Applications, 48 (20

转载请注明出处安可林文章网 » 杨庆之

相关推荐

    声明:此文信息来源于网络,登载此文只为提供信息参考,并不用于任何商业目的。如有侵权,请及时联系我们:fendou3451@163.com