新闻资讯
看你所看,想你所想

3G演进:HSPA与LTE

《3G演进HSPA与LTE》是 人民邮电出版社出版的图书,作者是(瑞典)达勒蒙。

  • 书名 3G演进:HSPA与LTE
  • 作者 (瑞典)达勒蒙
  • 出版社 人民邮电出版社
  • 出版时间 2010年1月1日

信息

  作 者:(瑞典)达勒蒙等著

  出版来自时间:2010-1-1

 360百科 字 数:623000

  版 女厂状行沙非倒推脚粉次:1

  页 数:心干示优镇七黄治句装者608

  印刷时间:2010金说从故这克财该顾-1-1

  开 本:16开

  印 次:1

  纸 张:胶版纸

  ISBN:9787115216793

  包 装:平装

编辑推荐

  飞速发展的移动通愿服河解北曲根烧补信技术如何演进不但给各大余含运营商、设备厂商带来了挑战,也成为横亘在网络工程人员面前的巨大课题,如何应用新技术以保证自己在竞争中立于不败之地,是通信工程师们必须认真思考的问题。

  《3G演进:H责非且一渐某能波SPA与LTE(英文版.第阶川2版)》是爱立信研究院工程师们齐手操第续非修测从的经验结晶,探讨诸多3GPP标准细节,清晰地勾勒出了如何在各种移动通信演进技术之间进行取舍,准确体现了作者在把握技术演进方向上的前瞻意识。与许多只是阐述标准的同类书不同,《3G演进:HSPA与LTE(英文版.第2版)》内容均来自一线实演销精语居却艺句么面战,很多资料都是首次公开。全书内容分为五个部分,重在介绍3.5G和4G移动通信标准化开发的路线,关注常四我掌理无线接入技术和接入网络的演进,主要知识点包括:3.5G和4G系统及其发展背景;3.5G和4G涉及的具体技术,如高速数据传输、OFDM传输、多天线技术等;HSPA;LTE和SAE;系统性能评估。《3G演进:HSPA与LTE(英文版.第2版)》将使你更深入地理解3.5G和4G技术,自信应对未来通信技术挑战。

内容简介

  本书是爱立信研究院研发人员的经验之谈,描述了3G来自数字蜂窝系统如何演进成为先进的宽带移动接入技术,重点介绍了3G移动通信标准360百科化开发演进路线、无线接入技术和接入网络的演进。书中内容分为5部分,清晰地勾勒出了3G演进技术取舍的诸多细节。

  本书是移动通信行业技术人员的必备参考指南,也是高等院校通信专业师生不可多得的教学参考书。

作者简介

  Erik Dahlman博士,世界知名移动通信技术专家,爱立信研究院资深研究员,毕业于瑞典皇家工学院。早期从事WCDMA的3G移动通么团字五从钟香高电优信技术的研发和标准制定工作,后来成为3GPP项目成员,目前主要负责WCDMA 有宪烈实搞洋R5的标准化工作以及下一代手机系统的无线接入研究工作。他在无线通信领域拥有20多项专利,由于工作业绩突出,曾荣获IEEE运载工具技术学会肉开区展置压树地河染授予的Jack Neubauer奖以及爱立信研究院授予的年度发明家奖。

目录

  Part Ⅰ: Introduction

  1 Background of 3G evolution 3

  1.1 Histor仍迅核汉存控弱品信y and background of 3G 3

  1.1.1 B未温立财型士efore 3G 3

  1.1弦装用害亮配剂音.2 Early 3G discussions 5

  1.1.3 Research on 3G 6

  1.1.4 3G standardization starts 7

  1.2 Standardization 7

  1.2.1 The standardization process 7

  1.2.2 3GPP 9

  1.2.3 IMT-2000 activities in ITU 11

  1.3 Spectrum for 3G and s既界同危厂ystems beyond 3G 13

  2 The mo目岁殖则定检片边妒女tives behind the 3G evolution 15

  2.1 Driving forces 15

  2.1.1 Te规林核认短头居烈盟chnology advancement夫贵将煤剂评首事叫形底s 16

  2.1.2 Services 17

  2.1.3 随条入酸呀调话抓师次Cost and performance 20

  2.2 3G evolution: Two Radio Access Network approac验张权盟善说用hes and an evolved core network 21

  2.2.1 Radio Access Network evolution 21

  2.2.2 An evolved core network: system architecture evolution 24

  P助决措处胶客art Ⅱ: Technologies for 另利剂3G Evolution

  3 High data rates in mobile communication 29

  3.1 High data rates: Fundamental constraints 29

  3.1.1 High data rates in noise-limited scenarios 31

  3.1.2 Higher data rates in interference-limited scenarios 33

  3.2 Higher data rates within a limited bandwidth: Higher-order modulation 34

  3.2.1 Higher-order modulation in combination with channel co同钟吧ding 35

  3余务文众行急业象率祖稳.2.2 Variations in instantaneous transmit power 36

  3.3 Wider bandwidth including multi-carrier transmission 37

  3.3.1 Multi-carrier transmission 40

  4 OFDM transmission 43

  4.1 Basic principles of OFDM 43

  4.2 OFDM demodu高征轮初月查某划在尽吸lation 46

  4.3 OFDM implementation using IFFT/FFT processing 46

  4.4 Cyclic-prefix insertion 48

 架菜强环振呼春 4.5 Frequency-domain model of OFDM transmission 51

  4.6 Channel estimation and reference symbols 52

  4.7 Frequency diversity with OFDM: Importance of channel coding 53

  4.8 Selection of basic OFDM parameters 55

  4.8.1 OFDM subcarrier spacing 55

  4.8.2 Number of subcarriers 57

  4.8.3 Cyclic-prefix length 58

  4.9 Variations in instantaneous transmission power 58

  4.10 OFDM as a user-multiplexing and multiple-access scheme 59

  4.11 Multi-cell broadcast/multicast transmission and OFDM 61

  5 Wider-band 'single-carrier' transmission 65

  5.1 Equalization against radio-channel frequency selectivity 65

  5.1.1 Time-domain linear equalization 66

  5.1.2 Frequency-domain equalization 68

  5.1.3 Other equalizer strategies 71

  5.2 Uplink FDMA with flexible bandwidth assignment 71

  5.3 DFT-spread OFDM 73

  5.3.1 Basic principles 74

  5.3.2 DFTS-OFDM receiver 76

  5.3.3 User multiplexing with DFTS-OFDM 77

  5.3.4 Distributed DFTS-OFDM 78

  6 Multi-antenna techniques 81

  6.1 Multi-antenna configurations 81

  6.2 Benefits of multi-antenna techniques 82

  6.3 Multiple receive antennas 83

  6.4 Multiple transmit antennas 88

  6.4.1 Transmit-antenna diversity 89

  6.4.2 Transmitter-side beam-forming 93

  6.5 Spatial multiplexing 96

  6.5.1 Basic principles 97

  6.5.2 Pre-coder-based spatial multiplexing 100

  6.5.3 Non-linear receiver processing 102

  7 Scheduling, link adaptation and hybrid ARQ 105

  7.1 Link adaptation: Power and rate control 106

  7.2 Channel-dependent scheduling 107

  7.2.1 Downlink scheduling 108

  7.2.2 Uplink scheduling 112

  7.2.3 Link adaptation and channel-dependent scheduling in the frequency domain 115

  7.2.4 Acquiring on channel-state information 116

  7.2.5 Traffic behavior and scheduling 117

  7.3 Advanced retransmission schemes 118

  7.4 Hybrid ARQ with soft combining 120

  Part Ⅲ: HSPA

  8 WCDMA evolution: HSPA and MBMS 127

  8.1 WCDMA: Brief overview 129

  8.1.1 Overall architecture 129

  8.1.2 Physical layer 132

  8.1.3 Resource handling and packet-data session 137

  9 High-Speed Downlink Packet Access 139

  9.1 Overview 139

  9.1.1 Shared-channel transmission 139

  9.1.2 Channel-dependent scheduling 140

  9.1.3 Rate control and higher-order modulation 142

  9.1.4 Hybrid ARQ with soft combining 142

  9.1.5 Architecture 143

  9.2 Details of HSDPA 144

  9.2.1 HS-DSCH: Inclusion of features in WCDMA Release 5 144

  9.2.2 MAC-hs and physical-layer processing 147

  9.2.3 Scheduling 149

  9.2.4 Rate control 150

  9.2.5 Hybrid ARQ with soft combining 154

  9.2.6 Data flow 157

  9.2.7 Resource control for HS-DSCH 159

  9.2.8 Mobility 160

  9.2.9 UE categories 162

  9.3 Finer details of HSDPA 162

  9.3.1 Hybrid ARQ revisited: Physical-layer processing 162

  9.3.2 Interleaving and constellation rearrangement 167

  9.3.3 Hybrid ARQ revisited: Protocol operation 168

  9.3.4 In-sequence delivery 170

  9.3.5 MAC-hs header 172

  9.3.6 CQI and other means to assess the downlink quality 174

  9.3.7 Downlink control signaling: HS-SCCH 177

  9.3.8 Downlink control signaling: F-DPCH 180

  9.3.9 Uplink control signaling: HS-DPCCH 180

  10 Enhanced Uplink 185

  10.1 Overview 185

  10.1.1 Scheduling 186

  10.1.2 Hybrid ARQ with soft combining 188

  10.1.3 Architecture 189

  10.2 Details of Enhanced Uplink 190

  10.2.1 MAC-e and physical layer processing 193

  10.2.2 Scheduling 195

  10.2.3 E-TFC selection 202

  10.2.4 Hybrid ARQ with soft combining 203

  10.2.5 Physical channel allocation 208

  10.2.6 Power control 210

  10.2.7 Data flow 211

  10.2.8 Resource control for E-DCH 212

  10.2.9 Mobility 213

  10.2.10 UE categories 213

  10.3 Finer details of Enhanced Uplink 214

  10.3.1 Scheduling - the small print 214

  10.3.2 Further details on hybrid ARQ operation 223

  10.3.3 Control signaling 230

  11 MBMS: Multimedia Broadcast Multicast Services 239

  11.1 Overview 242

  11.1.1 Macro-diversity 243

  11.1.2 Application-level coding 245

  11.2 Details of MBMS 246

  11.2.1 MTCH 247

  11.2.2 MCCH and MICH 247

  11.2.3 MSCH 249

  12 HSPA Evolution 251

  12.1 MIMO 251

  12.1.1 HSDPA-MIMO data transmission 252

  12.1.2 Rate control for HSDPA-MIMO 256

  12.1.3 Hybrid-ARQ with soft combining for HSDPA-MIMO 256

  12.1.4 Control signaling for HSDPA-MIMO 257

  12.1.5 UE capabilities 259

  12.2 Higher-order modulation. 259

  12.3 Continuous packet connectivity 260

  12.3.1 DTX–reducing uplink overhead 261

  12.3.2 DRX–reducing UE power consumption 264

  12.3.3 HS-SCCH-less operation: downlink overhead reduction 265

  12.3.4 Control signaling 267

  12.4 Enhanced CELL_FACH operation 267

  12.5 Layer 2 protocol enhancements 269

  12.6 Advanced receivers 270

  12.6.1 Advanced UE receivers specified in 3GPP 271

  12.6.2 Receiver diversity (type 1) 271

  12.6.3 Chip-level equalizers and similar receivers (type 2) 272

  12.6.4 Combination with antenna diversity (type 3) 273

  12.6.5 Combination with antenna diversity and interference cancellation (type 3i) 274

  12.7 MBSFN operation 275

  12.8 Conclusion 275

  Part Ⅳ: LTE and SAE

  13 LTE and SAE: Introduction and design targets 279

  13.1 LTE design targets 280

  13.1.1 Capabilities 281

  13.1.2 System performance 282

  13.1.3 Deployment-related aspects 283

  13.1.4 Architecture and migration 285

  13.1.5 Radio resource management 286

  13.1.6 Complexity 286

  13.1.7 General aspects 286

  13.2 SAE design targets 287

  14 LTE radio access: An overview 289

  14.1 LTE transmission schemes: Downlink OFDM and uplink DFTS-OFDM/SC-FDMA 289

  14.2 Channel-dependent scheduling and rate adaptation 291

  14.2.1 Downlink scheduling 292

  14.2.2 Uplink scheduling 292

  14.2.3 Inter-cell interference coordination 293

  14.3 Hybrid ARQ with soft combining 294

  14.4 Multiple antenna support 294

  14.5 Multicast and broadcast support 295

  14.6 Spectrum flexibility 296

  14.6.1 Flexibility in duplex arrangement 296

  14.6.2 Flexibility in frequency-band-of-operation 297

  14.6.3 Bandwidth flexibility 297

  15 LTE radio interface architecture 299

  15.1 Radio link control 301

  15.2 Medium access control 302

  15.2.1 Logical channels and transport channels 303

  15.2.2 Scheduling 305

  15.2.3 Hybrid ARQ with soft combining 308

  15.3 Physical layer 311

  15.4 Terminal states 314

  15.5 Data flow 315

  16 Downlink transmission scheme 317

  16.1 Overall time-domain structure and duplex alternatives 317

  16.2 The downlink physical resource 319

  16.3 Downlink reference signals 324

  16.3.1 Cell-specific downlink reference signals 325

  16.3.2 UE-specific reference signals 328

  16.4 Downlink L1/L2 control signaling 330

  16.4.1 Physical Control Format Indicator Channel 332

  16.4.2 Physical Hybrid-ARQ Indicator Channel 334

  16.4.3 Physical Downlink Control Channel 338

  16.4.4 Downlink scheduling assignment 340

  16.4.5 Uplink scheduling grants 348

  16.4.6 Power-control commands 352

  16.4.7 PDCCH processing 352

  16.4.8 Blind decoding of PDCCHs 357

  16.5 Downlink transport-channel processing 361

  16.5.1 CRC insertion per transport block 361

  16.5.2 Code-block segmentation and per-code-block CRC insertion 362

  16.5.3 Turbo coding 363

  16.5.4 Rate-matching and physical-layer hybrid-ARQ functionality 365

  16.5.5 Bit-level scrambling 366

  16.5.6 Data modulation 366

  16.5.7 Antenna mapping 367

  16.5.8 Resource-block mapping 367

  16.6 Multi-antenna transmission 371

  16.6.1 Transmit diversity 372

  16.6.2 Spatial multiplexing 373

  16.6.3 General beam-forming 377

  16.7 MBSFN transmission and MCH 378

  17 Uplink transmission scheme 383

  17.1 The uplink physical resource 383

  17.2 Uplink reference signals 385

  17.2.1 Uplink demodulation reference signals 385

  17.2.2 Uplink sounding reference signals 393

  17.3 Uplink L1/L2 control signaling 396

  17.3.1 Uplink L1/L2 control signaling on PUCCH 398

  17.3.2 Uplink L1/L2 control signaling on PUSCH 411

  17.4 Uplink transport-channel processing 413

  17.5 PUSCH frequency hopping 415

  17.5.1 Hopping based on cell-specific hopping/mirroring patterns 416

  17.5.2 Hopping based on explicit hopping information 418

  18 LTE access procedures 421

  18.1 Acquisition and cell search 421

  18.1.1 Overview of LTE cell search 421

  18.1.2 PSS structure 424

  18.1.3 SSS structure 424

  18.2 System information 425

  18.2.1 MIB and BCH transmission 426

  18.2.2 System-Information Blocks 429

  18.3 Random access 432

  18.3.1 Step 1: Random-access preamble transmission 434

  18.3.2 Step 2: Random-access response 441

  18.3.3 Step 3: Terminal identification 442

  18.3.4 Step 4: Contention resolution 443

  18.4 Paging 444

  19 LTE transmission procedures 447

  19.1 RLC and hybrid-ARQ protocol operation 447

  19.1.1 Hybrid-ARQ with soft combining 448

  19.1.2 Radio-link control 459

  19.2 Scheduling and rate adaptation 465

  19.2.1 Downlink scheduling 467

  19.2.2 Uplink scheduling 470

  19.2.3 Semi-persistent scheduling 476

  19.2.4 Scheduling for half-duplex FDD 478

  19.2.5 Channel-status reporting 479

  19.3 Uplink power control 482

  19.3.1 Power control for PUCCH 482

  19.3.2 Power control for PUSCH 485

  19.3.3 Power control for SRS 488

  19.4 Discontinuous reception (DRX) 488

  19.5 Uplink timing alignment 490

  19.6 UE categories 495

  20 Flexible bandwidth in LTE 497

  20.1 Spectrum for LTE 497

  20.1.1 Frequency bands for LTE 498

  20.1.2 New frequency bands 501

  20.2 Flexible spectrum use 502

  20.3 Flexible channel bandwidth operation 503

  20.4 Requirements to support flexible bandwidth 505

  20.4.1 RF requirements for LTE 505

  20.4.2 Regional requirements 506

  20.4.3 BS transmitter requirements 507

  20.4.4 BS receiver requirements 511

  20.4.5 Terminal transmitter requirements 514

  20.4.6 Terminal receiver requirements 515

  21 System Architecture Evolution 517

  21.1 Functional split between radio access network and core network 518

  21.1.1 Functional split between WCDMA/HSPA radio access network and core network 518

  21.1.2 Functional split between LTE RAN and core network 519

  21.2 HSPA/WCDMA and LTE radio access network 520

  21.2.1 WCDMA/HSPA radio access network 521

  21.2.2 LTE radio access network 526

  21.3 Core network architecture 528

  21.3.1 GSM core network used for WCDMA/HSPA 529

  21.3.2 The 'SAE' core network: The Evolved Packet Core 533

  21.3.3 WCDMA/HSPA connected to Evolved Packet Core 536

  21.3.4 Non-3GPP access connected to Evolved Packet Core 537

  22 LTE-Advanced 539

  22.1 IMT-2000 development 539

  22.2 LTE-Advanced – The 3GPP candidate for IMT-Advanced 540

  22.2.1 Fundamental requirements for LTE-Advanced 541

  22.2.2 Extended requirements beyond ITU requirements 542

  22.3 Technical components of LTE-Advanced 542

  22.3.1 Wider bandwidth and carrier aggregation 543

  22.3.2 Extended multi-antenna solutions 544

  22.3.3 Advanced repeaters and relaying functionality 545

  22.4 Conclusion 546

  Part Ⅴ: Performance and Concluding Remarks

  23 Performance of 3G evolution 549

  23.1 Performance assessment 549

  23.1.1 End-user perspective of performance 550

  23.1.2 Operator perspective 552

  23.2 Performance in terms of peak data rates 552

  23.3 Performance evaluation of 3G evolution 553

  23.3.1 Models and assumptions 553

  23.3.2 Performance numbers for LTE with 5 MHz FDD carriers 555

  23.4 Evaluation of LTE in 3GPP 557

  23.4.1 LTE performance requirements 557

  23.4.2 LTE performance evaluation 559

  23.4.3 Performance of LTE with 20 MHz FDD carrier 560

  23.5 Conclusion 560

  24 Other wireless communications systems 563

  24.1 UTRA TDD 563

  24.2 TD-SCDMA (low chip rate UTRA TDD) 565

  24.3 CDMA2000 566

  24.3.1 CDMA2000 1x 567

  24.3.2 1x EV-DO Rev 0 567

  24.3.3 1x EV-DO Rev A 568

  24.3.4 1x EV-DO Rev B 569

  24.3.5 UMB (1x EV-DO Rev C) 571

  24.4 GSM/EDGE 573

  24.4.1 Objectives for the GSM/EDGE evolution 573

  24.4.2 Dual-antenna terminals 575

  24.4.3 Multi-carrier EDGE 575

  24.4.4 Reduced TTI and fast feedback 576

  24.4.5 Improved modulation and coding 577

  24.4.6 Higher symbol rates 577

  24.5 WiMAX (IEEE 802.16) 578

  24.5.1 Spectrum, bandwidth options and duplexing arrangement 580

  24.5.2 Scalable OFDMA 581

  24.5.3 TDD frame structure 581

  24.5.4 Modulation, coding and Hybrid ARQ 581

  24.5.5 Quality-of-service handling 582

  24.5.6 Mobility 583

  24.5.7 Multi-antenna technologies 584

  24.5.8 Fractional frequency reuse 584

  24.5.9 Advanced Air Interface (IEEE 802.16m) 585

  24.6 Mobile Broadband Wireless Access (IEEE 802.20) 586

  24.7 Summary 588

  25 Future evolution 589

  25.1 IMT-Advanced 590

  25.2 The research community 591

  25.3 Standardization bodies 591

  25.4 Concluding remarks 592

  References 593

  Index 603

转载请注明出处安可林文章网 » 3G演进:HSPA与LTE

相关推荐

    声明:此文信息来源于网络,登载此文只为提供信息参考,并不用于任何商业目的。如有侵权,请及时联系我们:fendou3451@163.com